Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37760502

RESUMO

Multiple myeloma (MM) is an incurable malignancy of plasma cells and the second most common hematologic malignancy in the United States. Although antibodies in clinical cancer therapy are generally of the IgG class, antibodies of the IgE class have attractive properties as cancer therapeutics, such as their high affinity for Fc receptors (FcεRs), the low serum levels of endogenous IgE allowing for less competition for FcR occupancy, and the lack of inhibitory FcRs. Importantly, the FcεRs are expressed on immune cells that elicit antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cell-mediated phagocytosis (ADCP), and/or antigen presentation such as mast cells, eosinophils, macrophages, and dendritic cells. We now report the development of a fully human IgE targeting human CD38 as a potential MM therapy. We targeted CD38 given its high and uniform expression on MM cells. The novel anti-CD38 IgE, expressed in mammalian cells, is properly assembled and secreted, exhibits the correct molecular weight, binds antigen and the high affinity FcεRI, and induces degranulation of FcεRI expressing cells in vitro and also in vivo in transgenic BALB/c mice expressing human FcεRIα. Moreover, the anti-CD38 IgE induces ADCC and ADCP mediated by monocytes/macrophages against human MM cells (MM.1S). Importantly, the anti-CD38 IgE also prolongs survival in a preclinical disseminated xenograft mouse model using SCID-Beige mice and human MM.1S cells when administered with human peripheral blood mononuclear cells (PBMCs) as a source of monocyte effector cells. Our results suggest that anti-CD38 IgE may be effective in humans bearing MM and other malignancies expressing CD38.

2.
Cancers (Basel) ; 15(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36980702

RESUMO

Transferrin receptor 1 (TfR1), also known as CD71, is a transmembrane protein involved in the cellular uptake of iron and the regulation of cell growth. This receptor is expressed at low levels on a variety of normal cells, but is upregulated on cells with a high rate of proliferation, including malignant cells and activated immune cells. Infection with the human immunodeficiency virus (HIV) leads to the chronic activation of B cells, resulting in high expression of TfR1, B-cell dysfunction, and ultimately the development of acquired immunodeficiency syndrome-related B-cell non-Hodgkin lymphoma (AIDS-NHL). Importantly, TfR1 expression is correlated with the stage and prognosis of NHL. Thus, it is a meaningful target for antibody-based NHL therapy. We previously developed a mouse/human chimeric IgG3 specific for TfR1 (ch128.1/IgG3) and showed that this antibody exhibits antitumor activity in an in vivo model of AIDS-NHL using NOD-SCID mice challenged intraperitoneally with 2F7 human Burkitt lymphoma (BL) cells that harbor the Epstein-Barr virus (EBV). We have also developed an IgG1 version of ch128.1 that shows significant antitumor activity in SCID-Beige mouse models of disseminated multiple myeloma, another B-cell malignancy. Here, we aim to explore the utility of ch128.1/IgG1 and its humanized version (hu128.1) in mouse models of AIDS-NHL. To accomplish this goal, we used the 2F7 cell line variant 2F7-BR44, which is more aggressive than the parental cell line and forms metastases in the brain of mice after systemic (intravenous) administration. We also used the human BL cell line JB, which in contrast to 2F7, is EBV-negative, allowing us to study both EBV-infected and non-infected NHL tumors. Treatment with ch128.1/IgG1 or hu128.1 of SCID-Beige mice challenged locally (subcutaneously) with 2F7-BR44 or JB cells results in significant antitumor activity against different stages of disease. Treatment of mice challenged systemically (intravenously) with either 2F7-BR44 or JB cells also showed significant antitumor activity, including long-term survival. Taken together, our results suggest that targeting TfR1 with antibodies, such as ch128.1/IgG1 or hu128.1, has potential as an effective therapy for AIDS-NHL.

3.
J Immunother ; 45(5): 227-230, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35467582

RESUMO

Transferrin receptor 1 (TfR1) is a universal cancer marker and a meaningful target for antibody-based immunotherapy. We previously developed a mouse/human chimeric antibody (ch128.1/IgG1) specific for the human TfR1 and reported that treatment of SCID-Beige mice bearing disseminated human multiple myeloma (MM) cells with ch128.1/IgG1 results in significant antitumor activity in early-stage and late-stage disease. Both bortezomib and lenalidomide are Food and Drug Administration (FDA) approved therapeutics used to treat MM in combination with other agents. Since combining treatments with different mechanisms of action is an effective antitumor strategy and given the relevance of bortezomib and lenalidomide in MM therapy, we decided to explore, for the first time, the combination of bortezomib or lenalidomide treatment with ch128.1/IgG1 within the context of late-stage MM disease. We found that treatment with a single dose of ch128.1/IgG1, or multiple doses of bortezomib or lenalidomide, used as single agents, results in significant antitumor activity in SCID-Beige mice bearing late-stage disseminated human MM.1S tumors. However, this antitumor activity is superior when ch128.1/IgG1 is combined with either bortezomib or lenalidomide, showing significantly longer survival compared with any therapy used alone. These novel results suggest that the combinations of ch128.1/IgG1 and bortezomib or lenalidomide are promising strategies against MM.


Assuntos
Mieloma Múltiplo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Comunicação , Dexametasona , Humanos , Imunoglobulina G , Lenalidomida/uso terapêutico , Camundongos , Camundongos SCID , Receptores da Transferrina
4.
Nat Commun ; 13(1): 558, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35091550

RESUMO

Five New World mammarenaviruses (NWMs) cause life-threatening hemorrhagic fever (HF). Cellular entry by these viruses is mediated by human transferrin receptor 1 (hTfR1). Here, we demonstrate that an antibody (ch128.1/IgG1) which binds the apical domain of hTfR1, potently inhibits infection of attenuated and pathogenic NWMs in vitro. Computational docking of the antibody Fab crystal structure onto the known structure of hTfR1 shows an overlapping receptor-binding region shared by the Fab and the viral envelope glycoprotein GP1 subunit that binds hTfR1, and we demonstrate competitive inhibition of NWM GP1 binding by ch128.1/IgG1 as the principal mechanism of action. Importantly, ch128.1/IgG1 protects hTfR1-expressing transgenic mice against lethal NWM challenge. Additionally, the antibody is well-tolerated and only partially reduces ferritin uptake. Our findings provide the basis for the development of a novel, host receptor-targeted antibody therapeutic broadly applicable to the treatment of HF of NWM etiology.


Assuntos
Antígenos CD/metabolismo , Arenaviridae/metabolismo , Febre Hemorrágica Americana/metabolismo , Receptores da Transferrina/metabolismo , Proteínas do Envelope Viral/metabolismo , Células A549 , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Antígenos CD/imunologia , Arenaviridae/efeitos dos fármacos , Arenaviridae/fisiologia , Chlorocebus aethiops , Febre Hemorrágica Americana/prevenção & controle , Febre Hemorrágica Americana/virologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Vírus Junin/efeitos dos fármacos , Vírus Junin/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Simulação de Acoplamento Molecular , Ligação Proteica/efeitos dos fármacos , Receptores da Transferrina/antagonistas & inibidores , Receptores da Transferrina/imunologia , Células Vero
5.
Mol Cancer Ther ; 20(12): 2457-2468, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34625505

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) represents 3% of all cancer cases and 7% of all cancer deaths in the United States. Late diagnosis and inadequate response to standard chemotherapies contribute to an unfavorable prognosis and an overall 5-year survival rate of less than 10% in PDAC. Despite recent advances in tumor immunology, tumor-induced immunosuppression attenuates the immunotherapy response in PDAC. To date, studies have focused on IgG-based therapeutic strategies in PDAC. With the recent interest in IgE-based therapies in multiple solid tumors, we explored the MUC1-targeted IgE potential against pancreatic cancer. Our study demonstrates the notable expression of FceRI (receptor for IgE antibody) in tumors from PDAC patients. Our study showed that administration of MUC1 targeted-IgE (mouse/human chimeric anti-MUC1.IgE) antibody at intermittent levels in combination with checkpoint inhibitor (anti-PD-L1) and TLR3 agonist (PolyICLC) induces a robust antitumor response that is dependent on NK and CD8 T cells in pancreatic tumor-bearing mice. Subsequently, our study showed that the antigen specificity of the IgE antibody plays a vital role in executing the antitumor response as nonspecific IgE, induced by ovalbumin (OVA), failed to restrict tumor growth in pancreatic tumor-bearing mice. Utilizing the OVA-induced allergic asthma-PDAC model, we demonstrate that allergic phenotype induced by OVA cannot restrain pancreatic tumor growth in orthotopic tumor-bearing mice. Together, our data demonstrate the novel tumor protective benefits of tumor antigen-specific IgE-based therapeutics in a preclinical model of pancreatic cancer, which can open new avenues for future clinical interventions.


Assuntos
Adenocarcinoma/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Imunoglobulina E/uso terapêutico , Animais , Humanos , Imunoglobulina E/farmacologia , Camundongos
6.
Mol Cancer Ther ; 20(9): 1592-1602, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34158342

RESUMO

Epstein-Barr virus (EBV) is a human gammaherpesvirus associated with the development of hematopoietic cancers of B-lymphocyte origin, including AIDS-related non-Hodgkin lymphoma (AIDS-NHL). Primary infection of B-cells with EBV results in their polyclonal activation and immortalization. The transferrin receptor 1 (TfR1), also known as CD71, is important for iron uptake and regulation of cellular proliferation. TfR1 is highly expressed in proliferating cells, including activated lymphocytes and malignant cells. We developed a mouse/human chimeric antibody targeting TfR1 (ch128.1/IgG1) that has previously shown significant antitumor activity in immunosuppressed mouse models bearing human malignant B-cells, including multiple myeloma and AIDS-NHL cells. In this article, we examined the effect of targeting TfR1 to inhibit EBV-driven activation and growth of human B-cells in vivo using an immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl /SzJ [NOD/SCID gamma (NSG)] mouse model. Mice were implanted with T-cell-depleted, human peripheral blood mononuclear cells (PBMCs), either without EBV (EBV-), or exposed to EBV in vitro (EBV+), intravenously via the tail vein. Mice implanted with EBV+ cells and treated with an IgG1 control antibody (400 µg/mouse) developed lymphoma-like growths of human B-cell origin that were EBV+, whereas mice implanted with EBV+ cells and treated with ch128.1/IgG1 (400 µg/mouse) showed increased survival and significantly reduced inflammation and B-cell activation. These results indicate that ch128.1/IgG1 is effective at preventing the growth of EBV+ human B-cell tumors in vivo, thus, indicating that there is significant potential for agents targeting TfR1 as therapeutic strategies to prevent the development of EBV-associated B-cell malignancies. SIGNIFICANCE: An anti-TfR1 antibody, ch128.1/IgG1, effectively inhibits the activation, growth, and immortalization of EBV+ human B-cells in vivo, as well as the development of these cells into lymphoma-like tumors in immunodeficient mice.


Assuntos
Anticorpos Monoclonais/farmacologia , Linfócitos B/imunologia , Infecções por Vírus Epstein-Barr/complicações , Imunoglobulina G/imunologia , Linfoma/tratamento farmacológico , Receptores da Transferrina/imunologia , Linfócitos T/imunologia , Animais , Apoptose , Linfócitos B/metabolismo , Linfócitos B/patologia , Proliferação de Células , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4 , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Ativação Linfocitária , Linfoma/patologia , Linfoma/virologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células Tumorais Cultivadas
7.
Front Immunol ; 12: 607692, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815364

RESUMO

The transferrin receptor 1 (TfR1), also known as cluster of differentiation 71 (CD71), is a type II transmembrane glycoprotein that binds transferrin (Tf) and performs a critical role in cellular iron uptake through the interaction with iron-bound Tf. Iron is required for multiple cellular processes and is essential for DNA synthesis and, thus, cellular proliferation. Due to its central role in cancer cell pathology, malignant cells often overexpress TfR1 and this increased expression can be associated with poor prognosis in different types of cancer. The elevated levels of TfR1 expression on malignant cells, together with its extracellular accessibility, ability to internalize, and central role in cancer cell pathology make this receptor an attractive target for antibody-mediated therapy. The TfR1 can be targeted by antibodies for cancer therapy in two distinct ways: (1) indirectly through the use of antibodies conjugated to anti-cancer agents that are internalized by receptor-mediated endocytosis or (2) directly through the use of antibodies that disrupt the function of the receptor and/or induce Fc effector functions, such as antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cell-mediated phagocytosis (ADCP), or complement-dependent cytotoxicity (CDC). Although TfR1 has been used extensively as a target for antibody-mediated cancer therapy over the years, interest continues to increase for both targeting the receptor for delivery purposes and for its use as direct anti-cancer agents. This review focuses on the developments in the use of antibodies targeting TfR1 as direct anti-tumor agents.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Receptores da Transferrina/antagonistas & inibidores , Animais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antígenos CD , Antineoplásicos Imunológicos/uso terapêutico , Transporte Biológico/efeitos dos fármacos , Biomarcadores Tumorais , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Regulação Neoplásica da Expressão Gênica , Humanos , Ferro/metabolismo , Terapia de Alvo Molecular/efeitos adversos , Terapia de Alvo Molecular/métodos , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Immunother ; 43(2): 48-52, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31693515

RESUMO

The transferrin receptor 1 (TfR1) is a meaningful target for antibody-based cancer therapy given its overexpression on malignant cells and its central role in cancer pathology. We previously developed a mouse/human chimeric IgG3 targeting human TfR1 (ch128.1), which exhibits significant antitumor activity against multiple myeloma (MM) in xenograft models of SCID-Beige mice bearing disseminated ARH-77 or KMS-11 tumors. This activity is observed in early and late disease stages of disseminated KMS-11 tumors and, in this model, the mechanism of antitumor activity is Fc-mediated, involving macrophages. As human IgG1 is the isotype of choice for therapeutic antibodies targeting malignant cells and has several advantages compared with IgG3, including established manufacturability, we now developed an IgG1 version of ch128.1. A single dose of ch128.1/IgG1 shows significant antitumor activity, not only against early and late stages of disseminated KMS-11 tumors (Asian origin) but also against these stages of disseminated disease following injection of human MM cells MM.1S (African American origin) or its variant that is resistant to dexamethasone MM.1R. Treatment with the Fc mutant version of ch128.1/IgG1 (L234A/L235A/P329S) with impaired effector functions fails to confer protection against MM.1S and MM.1R tumors, indicating a crucial role of the Fc fragment in the antitumor activity, similar to its IgG3 counterpart. In fact, we found that ch128.1/IgG1, but not the mutant, elicits antibody-dependent cell-mediated cytotoxicity and antibody-dependent cell-mediated phagocytosis in the presence of murine bone marrow-derived macrophages. Our results suggest that ch128.1/IgG1 is a promising therapeutic against human B-cell malignancies such as MM.


Assuntos
Imunoglobulina G/imunologia , Mieloma Múltiplo/imunologia , Receptores da Transferrina/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Linfócitos B/imunologia , Feminino , Xenoenxertos/imunologia , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Macrófagos/imunologia , Camundongos , Camundongos SCID , Fagocitose/imunologia
9.
Cytokine ; 120: 220-226, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31121497

RESUMO

An antibody-cytokine fusion protein, composed of the murine single-chain cytokine interleukin-12 (IL-12) genetically fused to a human IgG3 specific for the human tumor-associated antigen HER2/neu maintains antigen binding, cytokine bioactivity, and IL-12 heparin-binding activity. This latter property is responsible for the binding of the cytokine to glycosaminoglycans (GAGs) on the cell surface and the extracellular matrix and has been implicated in modulating IL-12 bioactivity. Previous studies indicate that the p40 subunit of human and murine IL-12 is responsible for the heparin-binding activity of this heterodimeric cytokine. In the present study we used bioinformatic analysis and site-directed mutagenesis to develop a version of the antibody-(IL-12) fusion protein without heparin-binding activity. This was accomplished by replacing the basic arginine (R) and lysine (K) residues in the cluster of amino acids 254-260 (RKKEKMK) of the murine IL-12 p40 subunit by the neutral non-polar amino acid alanine (A), generating an AAAEAMA mutant fusion protein. ELISA and flow cytometry demonstrated that the antibody fusion protein lacks heparin-binding activity but retains antigen binding. A T-cell proliferation assay showed IL-12 bioactivity in this construct. However, the IL-12 bioactivity is decreased compared to its non-mutated counterpart, which is consistent with an ancillary role of the heparin-binding site of IL-12 in modulating its activity. Thus, we have defined a cluster of amino acid residues with a crucial role in the heparin-binding activity of murine IL-12 in the context of an antibody-cytokine fusion protein.


Assuntos
Aminoácidos/metabolismo , Anticorpos/metabolismo , Heparina/metabolismo , Interleucina-12/química , Interleucina-12/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Camundongos , Ligação Proteica , Receptor ErbB-2/metabolismo , Linfócitos T/citologia
10.
Front Immunol ; 10: 138, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30833944

RESUMO

Mast cells (MC) are important immune sentinels found in most tissue and widely recognized for their role as mediators of Type I hypersensitivity. However, they also secrete anti-cancer mediators such as tumor necrosis factor alpha (TNF-α) and granulocyte-macrophage colony-stimulating factor (GM-CSF). The purpose of this study was to investigate adipose tissue as a new source of MC in quantities that could be used to study MC biology focusing on their ability to bind to and kill breast cancer cells. We tested several cell culture media previously demonstrated to induce MC differentiation. We report here the generation of functional human MC from adipose tissue. The adipose-derived mast cells (ADMC) are phenotypically and functionally similar to connective tissue expressing tryptase, chymase, c-kit, and FcεRI and capable of degranulating after cross-linking of FcεRI. The ADMC, sensitized with anti-HER2/neu IgE antibodies with human constant regions (trastuzumab IgE and/or C6MH3-B1 IgE), bound to and released MC mediators when incubated with HER2/neu-positive human breast cancer cells (SK-BR-3 and BT-474). Importantly, the HER2/neu IgE-sensitized ADMC induced breast cancer cell (SK-BR-3) death through apoptosis. Breast cancer cell apoptosis was observed after the addition of cell-free supernatants containing mediators released from FcεRI-challenged ADMC. Apoptosis was significantly reduced when TNF-α blocking antibodies were added to the media. Adipose tissue represents a source MC that could be used for multiple research purposes and potentially as a cell-mediated cancer immunotherapy through the expansion of autologous (or allogeneic) MC that can be targeted to tumors through IgE antibodies recognizing tumor specific antigens.


Assuntos
Tecido Adiposo/citologia , Neoplasias da Mama , Mastócitos/imunologia , Apoptose , Células Cultivadas , Citotoxicidade Imunológica , Humanos
11.
Cancer Res ; 79(6): 1239-1251, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30659021

RESUMO

There is an unmet need for the treatment of glioblastoma multiforme (GBM). The extracellular matrix, including laminins, in the tumor microenvironment is important for tumor invasion and progression. In a panel of 226 patient brain glioma samples, we found a clinical correlation between the expression of tumor vascular laminin-411 (α4ß1γ1) with higher tumor grade and with expression of cancer stem cell (CSC) markers, including Notch pathway members, CD133, Nestin, and c-Myc. Laminin-411 overexpression also correlated with higher recurrence rate and shorter survival of GBM patients. We also showed that depletion of laminin-411 α4 and ß1 chains with CRISPR/Cas9 in human GBM cells led to reduced growth of resultant intracranial tumors in mice and significantly increased survival of host animals compared with mice with untreated cells. Inhibition of laminin-411 suppressed Notch pathway in normal and malignant human brain cell types. A nanobioconjugate potentially suitable for clinical use and capable of crossing blood-brain barrier was designed to block laminin-411 expression. Nanobioconjugate treatment of mice carrying intracranial GBM significantly increased animal survival and inhibited multiple CSC markers, including the Notch axis. This study describes an efficient strategy for GBM treatment via targeting a critical component of the tumor microenvironment largely independent of heterogeneous genetic mutations in glioblastoma.Significance: Laminin-411 expression in the glioma microenvironment correlates with Notch and other cancer stem cell markers and can be targeted by a novel, clinically translatable nanobioconjugate to inhibit glioma growth.


Assuntos
Sistemas CRISPR-Cas , Glioblastoma/patologia , Laminina/metabolismo , Nanopartículas/química , Células-Tronco Neoplásicas/patologia , Receptores Notch/metabolismo , Microambiente Tumoral , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Laminina/antagonistas & inibidores , Laminina/genética , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Receptores Notch/genética , Transdução de Sinais , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Immunol ; 200(10): 3485-3494, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29654211

RESUMO

The transferrin receptor 1 (TfR1) is an attractive target for Ab-mediated cancer therapy. We previously developed a mouse/human chimeric IgG3 Ab (ch128.1) targeting human TfR1, which exhibits direct in vitro cytotoxicity against certain human malignant B cells through TfR1 degradation and iron deprivation. ch128.1 also demonstrates exceptional antitumor activity against the B cell malignancy multiple myeloma (MM) in xenograft models of SCID-Beige mice bearing either disseminated ARH-77 or KMS-11 cells in an early disease setting. Interestingly, this activity is observed even against KMS-11 cells, which show no sensitivity to the direct cytotoxic activity of ch128.1 in vitro. To understand the contributions of the Fc fragment, we generated a ch128.1 mutant with impaired binding to FcγRs and to the complement component C1q, which retains binding to the neonatal Fc receptor. We now report that this mutant Ab does not show antitumor activity in these two MM models, indicating a crucial role of the Fc fragment in the antitumor activity of ch128.1, which can be attributed to effector functions (Ab-dependent cell-mediated cytotoxicity, Ab-dependent cell-mediated phagocytosis, and/or complement-dependent cytotoxicity). Interestingly, in the KMS-11 model, complement depletion does not affect protection, whereas macrophage depletion does. Consistent with this observation, we found that ch128.1 induces Ab-dependent cell-mediated cytotoxicity and Ab-dependent cell-mediated phagocytosis against KMS-11 cells in the presence of murine bone marrow-derived macrophages. Finally, we found that ch128.1 therapy effectively increases survival in a late MM disease setting. Our results suggest that macrophages play a major role in ch128.1-mediated antitumor protection in our models and that ch128.1 can be effective against human B cell malignancies such as MM.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Receptores da Transferrina/metabolismo , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Complemento C1q/metabolismo , Citofagocitose/efeitos dos fármacos , Feminino , Humanos , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Camundongos , Camundongos SCID , Mieloma Múltiplo/metabolismo
13.
Front Immunol ; 8: 1751, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29379493

RESUMO

The remarkable progress in engineering and clinical development of therapeutic antibodies in the last 40 years, after the seminal work by Köhler and Milstein, has led to the approval by the United States Food and Drug Administration (FDA) of 21 antibodies for cancer immunotherapy. We review here these approved antibodies, with emphasis on the methods used for their discovery, engineering, and optimization for therapeutic settings. These methods include antibody engineering via chimerization and humanization of non-human antibodies, as well as selection and further optimization of fully human antibodies isolated from human antibody phage-displayed libraries and immunization of transgenic mice capable of generating human antibodies. These technology platforms have progressively led to the development of therapeutic antibodies with higher human content and, thus, less immunogenicity. We also discuss the genetic engineering approaches that have allowed isotype switching and Fc modifications to modulate effector functions and bioavailability (half-life), which together with the technologies for engineering the Fv fragment, have been pivotal in generating more efficacious and better tolerated therapeutic antibodies to treat cancer.

15.
Cancer Res ; 76(19): 5822-5831, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27530328

RESUMO

DEPTOR is a 48 kDa protein that binds to mTOR and inhibits this kinase in TORC1 and TORC2 complexes. Overexpression of DEPTOR specifically occurs in a model of multiple myeloma. Its silencing in multiple myeloma cells is sufficient to induce cytotoxicity, suggesting that DEPTOR is a potential therapeutic target. mTORC1 paralysis protects multiple myeloma cells against DEPTOR silencing, implicating mTORC1 in the critical role of DEPTOR in multiple myeloma cell viability. Building on this foundation, we interrogated a small-molecule library for compounds that prevent DEPTOR binding to mTOR in a yeast-two-hybrid assay. One compound was identified that also prevented DEPTOR-mTOR binding in human myeloma cells, with subsequent activation of mTORC1 and mTORC2. In a surface plasmon resonance (SPR) assay, the compound bound to recombinant DEPTOR but not to mTOR. The drug also prevented binding of recombinant DEPTOR to mTOR in the SPR assay. Remarkably, although activating TORC1 and TORC2, the compound induced apoptosis and cell-cycle arrest in multiple myeloma cell lines and prevented outgrowth of human multiple myeloma cells in immunodeficient mice. In vitro cytotoxicity against multiple myeloma cell lines was directly correlated with DEPTOR protein expression and was mediated, in part, by the activation of TORC1 and induction of p21 expression. Additional cytotoxicity was seen against primary multiple myeloma cells, whereas normal hematopoietic colony formation was unaffected. These results further support DEPTOR as a viable therapeutic target in multiple myeloma and suggest an effective strategy of preventing binding of DEPTOR to mTOR. Cancer Res; 76(19); 5822-31. ©2016 AACR.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Mieloma Múltiplo/tratamento farmacológico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Mieloma Múltiplo/patologia , Complexos Multiproteicos/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Serina-Treonina Quinases TOR/fisiologia
17.
PLoS One ; 11(1): e0146549, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26771192

RESUMO

Prostate cancer (PCa) mortality is driven by highly aggressive tumors characterized by metastasis and resistance to therapy, and this aggressiveness is mediated by numerous factors, including activation of stress survival pathways in the pro-inflammatory tumor microenvironment. LEDGF/p75, also known as the DFS70 autoantigen, is a stress transcription co-activator implicated in cancer, HIV-AIDS, and autoimmunity. This protein is targeted by autoantibodies in certain subsets of patients with PCa and inflammatory conditions, as well as in some apparently healthy individuals. LEDGF/p75 is overexpressed in PCa and other cancers, and promotes resistance to chemotherapy-induced cell death via the transactivation of survival proteins. We report in this study that overexpression of LEDGF/p75 in PCa cells attenuates oxidative stress-induced necrosis but not staurosporine-induced apoptosis. This finding was consistent with the observation that while LEDGF/p75 was robustly cleaved in apoptotic cells into a p65 fragment that lacks stress survival activity, it remained relatively intact in necrotic cells. Overexpression of LEDGF/p75 in PCa cells led to the upregulation of transcript and protein levels of the thiol-oxidoreductase ERp57 (also known as GRP58 and PDIA3), whereas its depletion led to ERp57 transcript downregulation. Chromatin immunoprecipitation and transcription reporter assays showed LEDGF/p75 binding to and transactivating the ERp57 promoter, respectively. Immunohistochemical analysis revealed significantly elevated co-expression of these two proteins in clinical prostate tumor tissues. Our results suggest that LEDGF/p75 is not an inhibitor of apoptosis but rather an antagonist of oxidative stress-induced necrosis, and that its overexpression in PCa leads to ERp57 upregulation. These findings are of significance in clarifying the role of the LEDGF/p75 stress survival pathway in PCa.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias da Próstata/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Apoptose/genética , Apoptose/fisiologia , Linhagem Celular Tumoral , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Necrose/metabolismo , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Neoplasias da Próstata/genética , Isomerases de Dissulfetos de Proteínas/genética , Ativação Transcricional/genética , Ativação Transcricional/fisiologia
18.
J Immunother ; 38(8): 307-10, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26325374

RESUMO

The transferrin receptor 1 (TfR1), also known as CD71, is a target for antibody-based cancer immunotherapy due to its high expression on the surface of cancer cells and its ability to internalize. We have previously developed a mouse/human chimeric IgG3 specific for human TfR1 genetically fused to avidin, as a vector to deliver biotinylated anticancer agents into malignant cells. However, we found that this fusion protein (ch128.1Av), and to a lesser extent the same antibody without avidin (ch128.1), exhibits direct cytotoxic activity in vitro against certain malignant hematopoietic cells through the induction of TfR1 degradation and lethal iron starvation. Importantly, both ch128.1 and ch128.1Av have also shown significant anticancer activity in 2 xenograft models of the B-cell malignancy multiple myeloma. It is interesting to note that ch128.1 exhibited superior anticancer activity in both models compared with ch128.1Av, even against malignant cells that show no sensitivity to ch128.1 in vitro. In the present study, we evaluated the efficacy of ch128.1 against an AIDS-related human Burkitt lymphoma cell line (2F7) to determine if ch128.1 can eliminate these cells in vitro and in an in vivo model of AIDS-related non-Hodgkin lymphoma (AIDS-NHL). Even though 2F7 cells expressed high TfR1 levels, these cells lacked sensitivity to the cytotoxicity induced by ch128.1 in vitro. However, ch128.1 showed significant anticancer activity against these AIDS-NHL cells in vivo by significantly prolonging the survival of immunodeficient mice bearing 2F7 tumors. Therefore, ch128.1 warrants further study as a candidate for the treatment of AIDS-NHL and other B-cell malignancies.


Assuntos
Antineoplásicos/uso terapêutico , Imunoglobulina G/uso terapêutico , Linfoma não Hodgkin/tratamento farmacológico , Receptores da Transferrina/antagonistas & inibidores , Proteínas Recombinantes de Fusão/uso terapêutico , Síndrome de Imunodeficiência Adquirida/complicações , Síndrome de Imunodeficiência Adquirida/tratamento farmacológico , Animais , Antígenos CD/imunologia , Antígenos CD/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Imunoglobulina G/farmacologia , Imunoterapia , Linfoma não Hodgkin/etiologia , Camundongos SCID , Receptores da Transferrina/imunologia , Receptores da Transferrina/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Resultado do Tratamento
19.
Mol Immunol ; 67(2 Pt B): 407-15, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26232328

RESUMO

The transferrin receptor 1 (TfR1) is involved in cellular iron uptake and regulation of cell proliferation. The increased expression of TfR1 observed in malignant cells, compared to normal cells, together with its extracellular accessibility, make this receptor an attractive target for antibody-mediated cancer therapy. We have developed a mouse/human chimeric IgG3 specific for human TfR1 (ch128.1), which shows anti-tumor activity against certain malignant B cells in vitro through TfR1 degradation and iron deprivation, and in vivo through a mechanism yet to be defined. To further explore potential mechanisms of action of ch128.1, we examined its ability to induce antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-mediated cytotoxicity (CDC). We now report that ch128.1 is capable of mediating ADCC and CDC against malignant B cells, which is consistent with its ability to bind FcγRI, FcγRIIIa, and the complement component C1q. To delineate the residues involved in these effector functions, we developed a panel of three constructs with mutations in the lower hinge region and CH2 domain: 1) L234A/L235A, 2) P331S, and 3) L234A/L235A/P331S. The triple mutant consistently displayed a significant reduction in ADCC, while the L234A/L235A mutant exhibited less reduction in ADCC, and the P331S mutant did not show reduced ADCC. However, all three mutants exhibited impaired binding to FcγRI and FcγRIIIa. These results suggest that all three residues contribute to ADCC, although to different degrees. The P331S mutant showed drastically decreased C1q binding and abolished CDC, confirming the critical role of this residue in complement activation, while the other residues play a less important role in CDC. Our study provides insights into the effector functions of human IgG3 in the context of an antibody targeting TfR1.


Assuntos
Antígenos CD/imunologia , Imunoglobulina G/imunologia , Receptores da Transferrina/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Linhagem Celular Tumoral , Complemento C1q/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Proteínas Mutantes/metabolismo , Ligação Proteica , Receptores de IgG/metabolismo
20.
Curr Top Microbiol Immunol ; 388: 109-49, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25553797

RESUMO

The success of antibody therapy in cancer is consistent with the ability of these molecules to activate immune responses against tumors. Experience in clinical applications, antibody design, and advancement in technology have enabled antibodies to be engineered with enhanced efficacy against cancer cells. This allows re-evaluation of current antibody approaches dominated by antibodies of the IgG class with a new light. Antibodies of the IgE class play a central role in allergic reactions and have many properties that may be advantageous for cancer therapy. IgE-based active and passive immunotherapeutic approaches have been shown to be effective in both in vitro and in vivo models of cancer, suggesting the potential use of these approaches in humans. Further studies on the anticancer efficacy and safety profile of these IgE-based approaches are warranted in preparation for translation toward clinical application.


Assuntos
Imunoglobulina E/uso terapêutico , Neoplasias/terapia , Animais , Anticorpos/uso terapêutico , Humanos , Imunoglobulina E/efeitos adversos , Imunoglobulina E/fisiologia , Imunoterapia , Mucina-1/imunologia , Antígeno Prostático Específico/imunologia , Receptor ErbB-2/imunologia , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...